|
II. Суждение как форма мышления
S P «а» Квадрат – прямоугольник.
Штриховкой показан сегмент, о котором идет речь в данном суждении. Данная схема: Все S есть P называют схемой общеутвердительного суждения (общего - по количеству субъекта в суждении и утвердительного по наличию утвердительной связки между субъектом и предикатом). Символически слева от общеутвердительного суждения ставят значок – «А» или «а». Частноутвердительные суждения – частные по количеству субъекта и утвердительные по качеству. Например: «Некоторые студенты спортсмены». Символически обозначают значком – «I» или «i».
P спортсмены.
S «е» Ни один обвиняемый не Р оправдан.
Частноотрицательные суждения – частные по количеству субъекта, отрицательные по качеству (связке). Например: «Некоторые студенты не спортсмены». Символически обозначают значком – «О» или «о».
S «о» Некоторые студенты не P спортсмены.
Если термин использован в суждении во всем объеме, его называют распределенным, в противном случае – нераспределенным. Например, в частных суждениях субъект не распределен, предикат может быть распределен или не распределен, а в общеотрицательном суждении и субъект, и предикат распределены. Преобразование суждения, в результате которого субъект исходного суждения становится предикатом, а предикат субъектом заключения, называется обращением. Такого рода преобразование называют «непосредственное дедуктивное умозаключение» или «непосредственный вывод». Например, в результате обращения суждения «квадрат – прямоугольник» получаем суждение (вывод) «некоторые прямоугольники – квадраты». Таким образом, общеутвердительное суждение становится частноутвердительным. Другой разновидностью непосредственного вывода является операция превращения. В результате превращения субъект суждения остается тем же, а на место первоначального предиката ставится понятие противоречащее ему. Например, в результате превращения суждения «квадраты – прямоугольники» получаем: «ни один квадрат не является не прямоугольником».
н е – Р
В результате превращения суждения «некоторые студенты не спортсмены» получаем: «некоторые студенты являются не спортсменами». Таким образом, частноотрицательное (о) суждение превращается в частноутвердительное (i).
не – Р
Преобразование, в результате которого на место первоначального субъекта ставится понятие, противоречащее первоначальному предикату, называют противопоставлением предикату. Например, результатом преобразования суждения «ни один квадрат не треугольник» получаем суждение «треугольник является не квадратом».
Непосредственный вывод можно сделать не во всех суждениях. Невозможно провести обращение в частноотрицательных суждениях и противопоставление предиката в частноутвердительных. Закономерности отношений между простыми категорическими атрибутивными суждениями по истинности иллюстрируют с помощью так называемого «логического квадрата». А Е
I О
Контрарное отношение существует между общеутвердительными (А) и общеотрицательными (Е) суждениями. Отношение утверждает, что оба суждения могут быть ложными, но не могут быть одновременно истинными. Например, между суждениями «все числа четные» (А) и «все числа нечетные» (Е) или между суждениями «все бамбуки - злаки» (А) и «ни один бамбук не является злаком» (Е). В первой паре оба суждения ложные, во второй паре первое суждение (А) – истинное, второе – ложное (Е). Субконтрарное отношение существует между суждениями частноутвердительными (I) и частноотрицательными (О). Отношение утверждает, что они могут быть одновременно истинными, но не могут быть одновременно ложными. Например, между суждениями «некоторые числа четные» (I) и «некоторые числа нечетные» (О). Первое и второе суждение одновременно истинные. Отношение подчинения существуют между общеутвердительными (А) и частноутвердительными (I) суждениями и, соответственно, между общеотрицательными (Е) и частноотрицательными (О), но не наоборот. Утверждает, что если общее по количеству суждение истинно, то истинно и соответствующее ему частное суждение. Например, «все квадраты прямоугольники» - истинно, соответственно истинно и суждение «некоторые квадраты прямоугольники». Отношение противоречия существует между общеутвердительными и частноотрицательными суждениями и, соответственно, между общеотрицательными и частноутвердительными. Утверждает, что если суждение истинно, то противоречащее ему обязательно ложно и наоборот. Например, «все квадраты - прямоугольники» противоречат суждению «некоторые квадраты – не прямоугольники». Таким образом, учитывая вышесказанное, можно сделать непосредственный вывод об истинности контрарного, подчиненного и противоречащего суждения, если известно, например, общеотрицательное суждение. Если суждение «квадрат не треугольник» (Е) истинно, то «квадрат – треугольник» (А) - ложно, «некоторые квадраты не треугольники» (О) может быть истинным или ложным (по «логическому квадрату»), «некоторые квадраты треугольники» (I) – ложно.
Просмотров: 556 Вернуться в категорию: Животные |
© 2013-2022 cozyhomestead.ru - При использовании материала "Удобная усадьба", должна быть "живая" ссылка на cozyhomestead.ru.
|