рус | укр

Главная

Контакты

Навигация:
Арсенал
Болезни
Витамины
Вода
Вредители
Декор
Другое
Животные
Защита
Комнатные растения
Кулинария
Мода
Народная медицина
Огород
Полесадник
Почва
Растения
Садоводство
Строительство
Теплицы
Термины
Участок
Фото и дизайн
Хранение урожая









Quot;Техническая теория" в рамках античной науки

 

Переход от использования в технике отдельных научных знаний к построению своеобразной античной "технической науки" мы находим в исследованиях Архимеда. Но отдельные предпосылки этого процесса можно найти и в самой античной математике. Например, в "Началах" Евклида нетрудно заметить группировку теорем (положений), которая вполне схожа с группировкой технических знаний (в технических теориях, как известно, описываются классы однородных идеальных объектов - колебательные контуры, кинематические цепи, тепловые и электрические машины и т.д.). Евклид объединяет в отдельные книги математические знания, описывающие классы однородных объектов.

Именно в античной математике (в работах до Евклида и в его "Началах") была впервые применена и отработана сама процедура сведения и преобразования одних идеальных объектов (фигур, еще не описанных в теории) к другим (описанным в теории). В ходе таких сведений и преобразований получались знания отношений ("равно", "больше", "меньше", "подобно", "параллельно"). В дальнейшем, как известно, эти знания были использованы в фундаментальных науках и параметризованы, то есть отнесены к связям параметров природных, реальных объектов. Наконец, именно в античной геометрии были отработаны две основные процедуры теоретического рассуждения: прямая - доказательство геометрических положений - и обратная — решение проблем (эти две процедуры выступали историческим эквива-ентом современной теоретической постановки и решения в технических науках задач "синтеза - анализа").

Более явно отдельные элементы технического мышления могут быть прослежены в античной астрономии. Конечная прагматическая ориентация теоретической астрономии не вызывает сомнений (предсказание лунных и солнечных затмений, восхода и захода планет и луны, определение долготы и широты и пр.)- Но совсем не очевидно, что эта ориентация может быть сближена с технической ориентацией, ведь человек вроде бы непричастен к ходу небесных явлений. Тем не менее, такое сближение возможно.

В определенном смысле все объекты античной астрономии могут быть отнесены к однородным. На эту мысль наводит единообразная система их моделей — геометрических изображений небесных сфер и эпициклов. Идеальные объекты, представленные в этих моделях, формируются точно так же, как идеальные объекты технических наук, то есть складываются в ходе схематизации и онтологизации процедур сведения одних теоретически представленных небесных явлений к другим (первоначально эти явления описывались в родственных "фундаментальных теориях" - арифметике, геометрии, теории пропорций). Аналогично этому в античной теоретической астрономии, вероятно, впервые была отработана процедура получения отношений между параметрами изучаемого в теории реального объекта.

Первоначально исходные параметры геометрических моделей теоретической астрономии заимствовались непосредственно из таблиц, фиксирующих ступенчатые и зигзагообразные функции. Эти таблицы греческие астрономы получили от вавилонян. Позднее греческие астрономы стали производить собственные измерения, ориентируясь уже на новые, "тригонометрические" модели, фиксирующие небесные явления, а также требования, возникающие и процессе преобразования этих моделей (в Новое время эта процедура была перенесена Галилеем в механику и уже в XIX в. — из естествознания в технические науки).

Если небесные тела и их траектории может создать, сотворить только Бог (главным же образом они мыслятся как природные, космические явления), то строительство кораблей - всецело дело рук человека, искусного техника. С этой точки зрения крайне интересные случаи использования научных знаний в технике демонстрирует работа Архимеда "О плавающих телах". По сути, это — вариант "технической науки до научной техники", однако представленный в форме античной теории, из которой изгнано всякое упоминание об объектах техники (кораблях).

Действительно, работа построена по всем канонам античной науки: формулируется аксиома, на основе которой доказываются теоремы, при доказательстве последующих теорем используется знание предыдущих. В тексте работы не приведены эмпирические знания, описания наблюдений или опытов; идеальные объекты – идеальная жидкость и погружение в нее идеальных тел - не противопоставляются реальным жидкостям и телам. Вообще если термины "жидкость" и "тело" не относить к реальным объектам, а связывать только с идеальными объектами и процедурами, развертыванием теории, то науку, которую построил Архимед, по способу описания нельзя отличить от математической теории "Начал" Евклида. Тем не менее, можно показать, что Архимед при построении своей теории использовал эмпирические знания о реальных жидкостях и телах, и сам его метод доказательства существенно отличается от математического. Рассмотрим оба эти момента подробнее.

Анализ формулировок некоторых теорем, содержащихся в этой работе, например: "...тело, более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью" - позволяет утверждать, что они получены в ходе измерений, при сопоставлении реальных объектов с общественно-фиксированными эталонами. Результаты сопоставления фиксировались затем в знаковых моделях (числах) или чертежах. В данном случае можно предположить, что осуществлялись два рода сопоставлений: взвешивание тел и жидкости и определение положения тел относительно поверхности жидкости (тело выступает над поверхностью, полностью погружено в жидкость, опускается "до самого низа" и т.д.).

Отличие доказательства, принятого в этой работе, от математического можно проследить при анализе ссылок. Первое положение Архимеда ("если поверхность, рассекаемая любой плоскостью, проходящей через одну точку, всегда дает в сечении окружность круга с центром в той самой точке, через которую проводятся секущие плоскости, то эта поверхность будет шаровой") является чисто математическим и опирается при доказательстве на математическое знание о равенстве радиусов шара. При доказательстве второго положения ("поверхность всякой жидкости, установившейся неподвижно, будет иметь форму шара, центр которого совпадает с центром Земли") используются не только первое положение, но также аксиома, не математическая по своей природе ("предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилегающих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся под ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-нибудь"). Кроме того, в этом доказательстве Архимед, не оговаривая, использует положение о равенстве частиц жидкости, расположенных на одинаковом расстоянии от центра Земли. Это положение, физическое по своей сути, позволяет Архимеду утверждать, что частицы жидкости, расположенные на одинаковом расстоянии от центра, не придут в движение (отсюда следует, что частицы покоящейся жидкости лежат на одинаковом расстоянии от центра Земли и, следовательно, поверхность такой жидкости имеет форму шара с центром, совпадающим с центром Земли). Таким образом, доказательство второго положения (и, как показывает анализ, всех последующих) включает две группы ссылок: на математические и физические положения (аксиому, или скрытое, или ранее доказанное положение). От физических положений в этих доказательствах Архимед переходит к определенным математическим положениям и наоборот. В результате в каждом доказательстве строится новое физическое положение (знание), включающее в себя определенные математические соотношения, доказанные в математике.

При доказательстве всех своих положений Архимед использует сложные чертежи, изображающие жидкость и погруженные в нее тела. Именно к этим чертежам относятся и математические, и физические положения (знания). На чертежах Архимед демонстрирует различные преобразования идеальных объектов - геометрических фигур и тел, а также идеальной жидкости, в которую погружены правильные тела, и переходит от математических идеальных объектов к физическим. Эти геометрические тела в практике кораблестроения используются как модели разрезов (сечений) кораблей. Собственно говоря, вся теория Архимеда в практическом отношении направлена на выяснение "законов" устойчивости кораблей (переменным параметром в данном случае является форма сечения).

Чем же отличается "техническая" наука Архимеда от современных технических наук классического типа? Казалось бы, и там и тут — реальное обращение к объектам техники и теоретическое описание закономерностей их строения и функционирования. И там и тут налицо применение для этих целей математического аппарата. И там и тут дело не ограничивается лишь реальными объектами техники, изучаются также случаи, мыслимые лишь теоретически, то есть те, которые конструируются на уровне идеальных объектов, но не выявлены в техническом устройстве (опережающая роль науки). Отличие все-таки принципиальное - у Архимеда нет специального языка технической науки (специфических для технической науки схем и понятий). Сцепление разных языков в его работе достигается за счет чертежей, которые еще не превратились в специфическое, самостоятельное средство научно-технического мышления (как, скажем, позднее, в конце XIX - начале XX в. это произошло со схемой колебательного контура, кинематического звена, четырехполюсника).

Просмотров: 164

Вернуться в категорию: Строительство

© 2013-2017 cozyhomestead.ru - При использовании материала "Удобная усадьба", должна быть "живая" ссылка на cozyhomestead.ru.